Page 6
Page 2

Mr. Torbert's Pixlab
[image: image8.png]
Buttons
Zero Blue
Sets the blue value to zero for every pixel.

Negate

Negates all the pixels in a picture by setting each color’s value to 255 minus the current value.

Grayscale

Turns picture into shades of gray by setting the red, green, and blue values of each pixel to a mixture of the current red, green, and blue value of the pixel. Some people do a straight average of the three R, G, B values. Others use: 30% red + 59% green + 11% blue. Beware: the Color constructor does not accept double values.
Sepia Tone
Sepia-toned pictures have a yellowish tint that we associate with older pictures. Microsoft’s recommended algorithm is:

· Set a pixel’s red value to the sum of .393 of its red value, .769 of its green value, and .189 of its blue value

· Set a pixel’s green value to the sum of .349 of its red value, .686 of its green value, and .168 of its blue value

· Set a pixel’s blue value to the sum of .272 of its red value, .534 of its green value, and .131 of its blue value

 Don't let any RGB value exceed 255.
Blur
	
	*
	

	*
	X
	*

	
	*
	

Get the colors of the four pixels to the left, right, bottom, and top of the current pixel. Set the current pixel’s color to the average of the colors of the current pixel and its four neighboring pixels. (You might have to click several times to see its effects. Alternatively, just blur the left half of the picture.) Be careful at the edges of the screen!
Posterize
A bunch of different colors gets set to just a few colors. For a range of colors, map them to a single color. For instance, if red is between 63 and 128, set red to 95. This requires a bunch of if-statements.

Color Splash
Turn a picture into a grayscale, except for the red colors, which remain their original red. A color is red if the red component is greater than the sum of its green and blue. cheer8.jpg is a good image to use.
MirrorL/R
Mirrors the left side of the picture onto the right side of the picture. Get a pixel from the left side of the picture and copy it onto a pixel on the right side of the picture that is on the same row and the same distance from the right end that the left pixel is from the left end.
MirrorU/D
Mirrors the upper half of the picture onto the bottom of the picture.
FlipL/R
Flips the whole image around a vertical axis, producing a left-right mirror image of the whole picture. Algorithm: get a pixel from the left side of the picture and exchange (or swap) it with a pixel on the right side of the picture that is on the same row and the same distance from the right end that the left pixel is from the left end. Notice that there is no need to modify any RGB values.
FlipU/D
Flips the whole image top-to-bottom, producing an upside-down image of the whole picture.
[image: image1.png]
Pixelate
Let the color of the “corner” pixel replace the colors in the square that is 10 pixels across and 10 down. Repeat for each 10 pixels across and down. For a greater challenge, first prompt the user to enter the size of the new square. Be careful at the edges of the screen!

Sunsetize
Decrease the green and blue values by 20%.

RemoveRedEye
Remove the red in the eyes of jenny-red.jpg, but don’t change the color of her shirt.

EdgeDetector

If the "distance" between the colors of a pixel and its neighbor is large, set the pixel to black. Otherwise, set the pixel to white. The "distance" between RGB colors is defined analogously to the Pythagorean distance between two points in three-dimensional space. Make a private helper method colorDistance. I looked for distances greater than 20 and used swan.jpg.
Challenges
Encode and Decode
Steganography is the science of hiding information in a picture. One way to hide a black and white message inside a color picture is by first changing all the red values in the original color picture to an even value. Then loop through both the original picture and the message picture, setting the red value of a pixel in the original picture to odd (by adding one to it) if the corresponding pixel in the message picture is close to the color black. Write an encode method that changes the current picture so it hides the message picture (msg.jpg) inside it. Then write a decode method that uncovers the message picture hidden in the current picture.
[image: image2.jpg][image: image3.jpg][image: image4.jpg]
 original beach message (msg.jpg) beach with hidden message
Chromakey
You may hard-code the foreground picture (blue_mark.jpg) Replace the current pixel color with the color from the other picture (moon-surface.jpg) at the same row and column when the current pixel color is close to a specified color. (This technique is used in many movies today.)
[image: image5.jpg][image: image6.jpg][image: image7.jpg]
 blue_mark.jpg moon-surface.jpg mark on the moon
Modify Red

Add a textfield to the GUI. Enter a % change (0-200) in the textfield, then click on the button. This method reduces or increases the red value for every pixel by the specified percentage.

Modify Blue
See above. Reduces or increases the blue value for every pixel by the specified percentage.

Modify Green

See above. Reduces or increases the green value for every pixel by the specified percentage.

Undo
Make an undo button. Every method needs to push the old image on a stack. The undo button will pop them off and display the old image.

PixLab UML Diagram

PanelPix has the buttons and listeners. The button codes are partially done for you. You need to write a listener that matches up to each button that you implement, like this:

 29 JButton zero = new JButton("Zero Blue");
 30 zero.addActionListener(new Listener_zeroBlue());
 31 east.add(zero);
. . .
134 private class Listener_zeroBlue implements ActionListener
135 {
136 public void actionPerformed(ActionEvent e)
137 {
138 display.zeroBlue();
139 update(display.getXval() , display.getYval());
140 }
141 }
DisplayPix gets the array, change the colors in some way, and sets the new image, like this:

 57 public void zeroBlue()
 58 {
 59 Color[][] tmp = pix.getArray(img);
 60 pix.zeroBlue(tmp);
 61 pix.setImage(img , tmp);
 62 }
PixelOperations has the actual color-manipulating methods. Each uses nested for-loops looping over rows and columns, such as:
49 public void zeroBlue(Color[][] arr)
50 {
51 for(int j = 0; j < arr.length; j++)
52 {
53 for(int k = 0; k < arr[0].length; k++)
54 {
55 Color tmp = arr[j][k];
56 arr[j][k] = new Color(tmp.getRed(), tmp.getGreen(), 0);
57 }
58 }
59 }
Partial Documentation for java.awt.Color

The Color class is used to encapsulate colors in the default sRGB color space or colors in arbitrary color spaces identified by a ColorSpace.
	Constructor Summary

	Color(int rgb)
Creates an opaque sRGB color with the specified combined RGB value consisting of the red component in bits 16-23, the green component in bits 8-15, and the blue component in bits 0-7.
 int black = 0;
 int blue = 255; // 2^8-1
 int green = 65280; //(2^8-1)*2^8
 int red = 16711680; //(2^8-1)*2^16
 int white = 16777215; // 2^24-1
black

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

blue

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

green

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

red

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

white

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

	

	Color(int r, int g, int b)
Creates an opaque sRGB color with the specified red, green, and blue, each in the range (0 - 255).

	

	Method Summary

	boolean
	equals(Object obj)
Determines whether another object is equal to this Color.

	int
	getBlue()
Returns the blue component in the range 0-255 in the default sRGB space.

	int
	getGreen()
Returns the green component in the range 0-255 in the default sRGB space.

	int
	getRed()
Returns the red component in the range 0-255 in the default sRGB space.

	int
	getRGB()
Returns the RGB value representing the color in the default sRGB ColorModel.
 int black = 0;
 int blue = 255; // 2^8-1
 int green = 65280; //(2^8-1)*2^8
 int red = 16711680; //(2^8-1)*2^16
 int white = 16777215; // 2^24-1

	String
	toString()
Returns a string representation of this Color.

Where are setBlue, setGreen, and setRed?
 If you aren't allowed to modify a color, how do you do these labs?
PixLab Exercises

1. A student programming the sepia tone effect wrote this code:

int newred = (int)0.393*red + (int)0.769*green + (int)0.189*blue;
int newgreen = (int)0.349*red + (int)0.686*green + (int)0.168*blue;
int newblue = (int)0.272*red + (int)0.534*green + (int)0.311*blue;
arr[j][k] = new Color(newred , newgreen , newblue);

But the Color always comes out black. You know that black is (0,0,0). How can you fix the code?

2. Write code to draw a blue grid on a picture. There should be 20 pixels between each line.

public void drawGrid(Color[][] arr)

{

3. Write code to crop out everything around the rectangle. That is, turn all the pixels outside the rectangle to white.

 public void cropRect(Color[][] arr)

{
4. Write code to mirror the rectangle across the vertical dashed line.

 X=200
 public void mirror(Color[][] arr)

 {

 JPanel

DisplayPix

PanelPix

DriverPix

BufferedImage

Scoreboard

Color

2-D array

PixelOperations�

ActionListeners�KeyListeners�MouseListeners

200,200

			 400,400

50,100

200,100

