Lab14: Schelling’s Segregation Model

- Attach a code printout.

- Consider two types of agents arranged in a checkerboard...
 - Delete the four corners.
 - Delete twenty more at random.
 - Add five back in at random.

- Assume each agent wants to neighbor some of its own type...
 - If it has only one or two neighbors, it wants one of them to share its type.
 - For three, four, or five, share types with two.
 - For six, seven, or eight, share types with three.
 - Remember that some of the squares are empty.

- If an agent is not satisfied with its neighbors...
 - Move to an empty square so that it is satisfied.
 - Move to the nearest such square.
 - Or, move to any such square at random.
 - Process agents in row-major order.

- Repeat this process in rounds. Stop when everyone is satisfied or after \(N \) rounds.

- Describe what happens.

Official Use Only

<table>
<thead>
<tr>
<th>Header:</th>
<th>Name</th>
<th>Correct Date</th>
<th>Program Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Style:</td>
<td>Comments</td>
<td>Variable Names</td>
<td>Modular</td>
</tr>
<tr>
<td>Data Structures:</td>
<td>Obvious</td>
<td>General</td>
<td>Lean</td>
</tr>
<tr>
<td>Algorithm:</td>
<td>Clear</td>
<td>Correct</td>
<td>Efficient</td>
</tr>
<tr>
<td>Scoring:</td>
<td>Raw _____</td>
<td>Late _____</td>
<td>Total _____</td>
</tr>
</tbody>
</table>

Artificial Intelligence

TJHSST