Lab13: Hough Transform

- Attach a code printout.

- Attach a PGM image showing pixelated bin counts where darker indicates more votes.

- Given...
  - A set of edge points.
  - The unrounded angle normal to the edge at each point.

- At each edge point...
  - Loop over all interior points in the direction normal to the edge.
  - At each point hit by this marching process increment a counter by one.
  - Only round on the pixel/bin location, not the angle.

- If there is a circle...
  - Pixels near the center will have relatively high counts.
  - Identify this center by a clustering algorithm such as k-means.
  - Or, choose a large enough bin that total count alone will suffice.

- To determine the radius...
  - Perform a statistical analysis on the distribution of distances to those edge points who “voted” for the identified-as-center bin.
  - Tricky, concentric circles.

---

Official Use Only

<table>
<thead>
<tr>
<th>Header:</th>
<th>Name</th>
<th>Correct Date</th>
<th>Program Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Style:</td>
<td>Comments</td>
<td>Variable Names</td>
<td>Modular</td>
</tr>
<tr>
<td>Data Structures:</td>
<td>Obvious</td>
<td>General</td>
<td>Lean</td>
</tr>
<tr>
<td>Algorithm:</td>
<td>Clear</td>
<td>Correct</td>
<td>Efficient</td>
</tr>
<tr>
<td>Scoring:</td>
<td>Raw</td>
<td>Late</td>
<td>Total</td>
</tr>
</tbody>
</table>

Artificial Intelligence  TJHSST