Name:	Date:	Period:

Lab07: Circle π

- Use PIL to create a 600×600 image in PNG format.
- Loop over all the pixels $(x p, y p)$ and calculate (x, y) coordinates:
- Where $0 \leq x p<600$ we have $0 \leq x<1$ instead, and likewise for y.
- While $x p$ is always an integer value x is a floating-point number.
- Be careful! Use code $x=(x p+0.5) / 600$ to center the coordinates.
- Color each pixel $(x p, y p)$ differently depending on whether the corresponding coordinates (x, y) fall inside or outside the unit circle: $x^{2}+y^{2}=1$
- Using printer friendly color choices, attach a print-out of this image.
- Then, count up the number of pixels that fall inside the unit circle.
- The area of a unit square is $A=1$, and of the unit circle $A=\pi$, thus a quarter circle has area $\pi / 4$. Our unit square contains 360,000 pixels. How many fall inside the circle?
- Since we know the ratio should be $\pi: 4$ we can approximate π as count/90000.
- Fill in the following table for larger and larger sizes:

Size	Approximation
600	
1000	
2000	
4000	
8000	
10000	

Official Use Only

Header:	Name	Correct Date	Program Description
Style:	Comments	Variable Names	Modular
Data Structures:	Obvious	General	Lean
Algorithm:	Clear	Correct	Efficient
Scoring:	Raw	Late	Total

