Name:	Date:	Period:

Lab17: Random Walk in 2-D, Part Three

- Initialize 1000 points at the center of your window.
- At each time step repeat 1000 times...
- Flip a four-sided coin, then move a point up or down or left or right.
- The idea is to do this independently for each of the 1000 points.
- So, one point's movement does not affect any other point's movement.
- At each time step print out two numbers:

1. The average distance of a point from the center.
2. The standard deviation of the distance of a point from the center.

$$
\begin{gathered}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
A V G=\mu=\frac{\sum d}{N U M} \\
\text { S.D. }=\sigma=\sqrt{\frac{\sum(d-A V G)^{2}}{N U M}}
\end{gathered}
$$

- Attach three plots of a normal curve showing early, middle, and late distributions.
- Be careful since $\sigma=0$ at the first step.
- Since distance cannot be negative this model is somewhat inaccurate (the left tail is cut off in reality). If the points are initialized along the circumference of a large circle then this error will mostly disappear. Shown below, the function f tells us the probability of finding a point at a distance d from the center. We want to plot d versus $f(d)$.

$$
f(d)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right) \cdot e^{\left(-\frac{(d-\mu)^{2}}{2 \sigma^{2}}\right)}
$$

