Many Trials

September 2011

Question...

How does the average number of steps scale with n ?


```
A Single Trial
\#
steps=0
\(j=n+1\)
while \(1<=j<=m\) :
    if random()<0.5:
        \(j+=1\)
        else:
        \(j-=1\)
    steps+=1
\#
```

Many Trials (1)

trial=1

while trial<=100:
\#
steps=0
$j=n+1$
while $1<=j<=m$:
...
\#
trial+=1

Many Trials (2)

\#

totalsteps=0

\#
trial=1
while trial<=numtrials:
trial+=1
\# print 'avg', (1.0*totalsteps)/numtrials
\#

How many trials?

Coin Flip Results

Source Code

```
count=0
trial=0
while trial<10000:
    #
    if random()<0.5:
        count+=1
    trial+=1
    #
    print trial,(1.0*count)/trial
```

Write the Results to a File
python coinflip.py > results.txt
. . . or . . .

IDLE

- Highlight All and Copy
- Spreadsheet then Paste
- Text \rightarrow Table

Gnuplot Script

set terminal png
set output "coinflip.png"
set ylabel "Observed Probability"
set yrange[0.45:0.55]
plot "results.txt" with lines notitle
... or ...

Spreadsheet

Lab Assignment: Average Number of Steps

- Run 10,000 trials with $n=5$.
- Report the average number of steps.
- Then, change n so that $n=6$ and repeat.
- Let $n=7,8,9$ and run 10,000 trials for each size.
- Report the average number of steps.
- Write code to do a loop for $n \leq 25$.
- Sketch a plot. What happens as n grows?
- The horizontal axis is n, the size, and the vertical axis is the average number of steps over 10, 000 trials. Label these clearly.

