Wind

October 2011

Translate into horizontal and vertical velocities...

Initial Conditions

from math import cos,sin,pi
\#
v0 = $15.00 \quad \#$ meters per second
theta $=45.0 *(\mathrm{pi} / 180.0)$
\#
$\mathrm{vx} \quad=\mathrm{v} 0 * \cos ($ theta) $\# \mathrm{~m} / \mathrm{s}$
vy $\quad=v 0 * \sin ($ theta)
\#
$\mathrm{g}=-9.81$
\# m/s per second

Air Resistance Terms

```
while y>=0.0:
#
    x += (vx*dt) # dt is the "timestep"
    y += (vy*dt)
vx += (ax*dt)
vy += (ay*dt)
# # TWO BIG IDEAS
ax = ( -c1*vx) # 1 oppose direction of motion
ay = (g-c1*vy) # 2 scale with increased speed
```

Comparison for $c_{1}=0.5$

- Both range and peak height are diminished.

Code to Data to Plot

python parabola.py > parabola.txt gnuplot parabola.gnu
display parabola.png

Advantage

- Quickly determine data from model.
- Quickly generate plots from data.
- Quickly compare the effects of c_{1}, v_{w}, v_{0}, and θ.

Gnuplot Script
set terminal png
set output "parabola.png"
set title "Deconstructed Parabola"
set xlabel "Distance, meters"
set ylabel "Height, meters"
set xtics nomirror
set ytics nomirror
set xrange[:25]
plot "parabola.txt" using 2:3 w l notitle, 0 w l

Horizontal Wind Only

```
#
vw = -4.4704 # headwind of 10 mph
#
while y>=0.0:
#
#
ax = ( -c1*(vx-vw))
ay = (g-c1*(vy ))
```


Comparison

Projectile Motion with Air Resistance and Wind

- Note how $t_{\max }$ is greater for the $c_{1}=0$ case.

Horizontal Wind Only, Part Two

```
#
vw = 4.4704 # tailwind of 10 mph
#
while y>=0.0:
#
#
ax = ( -c1*(vx-vw))
ay =(g-c1*(vy ))
```

Comparison, Part Two
Projectile Motion with a Headwind or Tailwind

- Note how $t_{\text {max }}$ is the same for all $c_{1} \neq 0$ cases.

Lab Assignment: Air Resistance with Wind

\bullet Set $c_{1}=0.5, v_{0}=15.0 \mathrm{~m} / \mathrm{s}, \theta=60^{\circ}$ and compare wind to the no air resistance parabola.

- Use $v_{w}=-10.0,0.0,10.0,20.0$ and $30.0 \mathrm{~m} / \mathrm{s}$. Sketch a plot.
- Sketch a plot to compare the range x_{T} for various values of v_{w}.
- Increment v_{w} by $1.0 \mathrm{~m} / \mathrm{s}$ between samples.
- Also...
- How do different c_{1} values compare?
- How do different θ values compare?

Next Topic \rightarrow Free Fall

