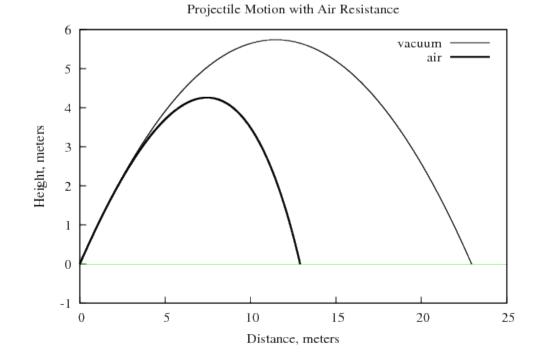

Wind

October 2011

Translate into horizontal and vertical velocities...



Initial Conditions

Air Resistance Terms

Comparison for $c_1 = 0.5$

• Both range and peak height are diminished.

Code to Data to Plot

```
python parabola.py > parabola.txt
gnuplot parabola.gnu
display parabola.png
```

Advantage

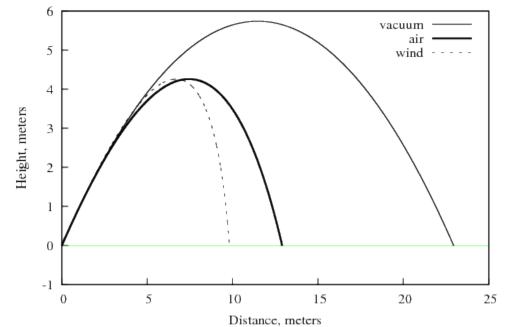
- Quickly determine data from model.
- Quickly generate plots from data.
- Quickly compare the effects of c_1 , v_w , v_0 , and θ .

Gnuplot Script

```
set terminal png
```

```
set output "parabola.png"
```

- set title "Deconstructed Parabola"
- set xlabel "Distance, meters"
- set ylabel "Height, meters"
- set xtics nomirror
- set ytics nomirror

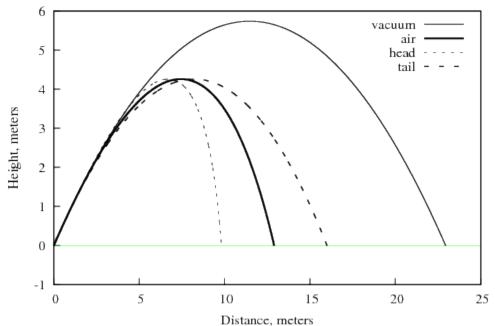

```
set xrange[:25]
```

plot "parabola.txt" using 2:3 w l notitle, 0 w l

Horizontal Wind Only

```
#
vw = -4.4704 # headwind of 10 mph
#
while y>=0.0:
    #
    ...
    #
    ax = ( -c1*(vx-vw))
    ay = (g-c1*(vy ))
```

Comparison


Projectile Motion with Air Resistance and Wind

• Note how t_{max} is greater for the $c_1 = 0$ case.

Horizontal Wind Only, Part Two

```
#
vw = 4.4704 # tailwind of 10 mph
#
while y>=0.0:
    #
    ...
    #
    ax = ( -c1*(vx-vw))
    ay = (g-c1*(vy ))
```

Comparison, Part Two

Projectile Motion with a Headwind or Tailwind

• Note how t_{max} is the same for all $c_1 \neq 0$ cases.

Lab Assignment: Air Resistance with Wind

- Set $c_1 = 0.5$, $v_0 = 15.0$ m/s, $\theta = 60^{\circ}$ and compare wind to the no air resistance parabola.
- Use $v_w = -10.0, 0.0, 10.0, 20.0$ and 30.0 m/s. Sketch a plot.
- Sketch a plot to compare the range x_T for various values of v_w . - Increment v_w by 1.0 m/s between samples.
- Also...
 - How do different c_1 values compare?
 - How do different θ values compare?

Next Topic \rightarrow Free Fall